Viral vectors are tailored to their specific applications but generally share a few key properties:
Safety: Although viral vectors are occasionally created from pathogenic viruses, they are modified in such a way as to minimize the risk of handling them. This usually involves the deletion of a part of the viral genome critical for viral replication. Such a virus can efficiently infect cells but, once the infection has taken place, requires a helper virus to provide the missing proteins for production of new virions.
Low toxicity: The viral vector should have a minimal effect on the physiology of the cell it infects.
Stability: Some viruses are genetically unstable and can rapidly rearrange their genomes. This is detrimental to predictability and reproducibility of the work conducted using a viral vector and is avoided in their design.
Cell type specificity: Most viral vectors are engineered to infect as wide a range of cell types as possible. However, sometimes the opposite is preferred. The viral receptor can be modified to target the virus to a specific kind of cell. Viruses modified in this manner are said to be pseudotyped.
Identification: Viral vectors are often given certain genes that help identify which cells took up the viral genes. These genes are called Markers. A common marker is antibiotic resistance to a certain antibiotic. The cells can then be isolated easily as those that have not taken up the viral vector genes do not have antibiotic resistance and so cannot grow in a culture with antibiotics present.