GenJet™ In Vitro DNA Transfection Reagent for MEFs (Ver. II)

---- A Protocol for Transfecting MEFs

100	μΙ
500	μΙ
1000	ul

This product is for laboratory research ONLY and not for diagnostic use

9601 Medical Center Drive A/R Building Suite 341 Rockville MD 20850 FAX. 301-560-4919

TEL 301-330-5966

Toll Free. 1-(866)-918-6812 Email: <u>info@signagen.com</u> Web: <u>www.signagen.com</u>

Introduction:

GenJet™ In Vitro DNA Tranfection Reagent (Ver. II) is upgraded version of GenJet™ In Vitro DNA Tranfection Reagent. With a new chemistry, more DNA condensing groups were released in the new version compared with old version GenJet™, leading to 3~20 times more efficient in DNA delivery. GenJet™ (Ver. II) for MEFs was pre-optimized and conditioned for transfecting mouse embryonic fibroblasts (MEFs).

Procedures for Transfecting MEFs Cells:

Step I. Culturing of Cells Before Transfection

We recommend growing MEFs in a 10 cm plate. The cells should be plated at least 24 hours prior to transfection so that the monolayer cell density reaches to the optimal 95~100% confluency at the day of transfection.

Table 1. A Guideline for Optimal Cell Number Per Well in Different Culture

Culture Dishes	Surface Area (cm²)	Optimal Cell Number
T75 Flask	75	9.4 x 10 ⁶
100 mm Dish	58	7.3 x 10 ⁶
60 mm Dish	21	2.7 x 10 ⁶
35 mm Dish	9.6	1.2 x 10 ⁶
6-well Plate	9.6	1.2 x 10 ⁶
12-well Plate	3.5	0.42 x 10 ⁶
24-well Plate	1.9	0.23 x 10 ⁶
48-well Plate	1.0	0.13 x 10 ⁶
96-well Plate	0.3	0.42 x 10 ⁵

Table 2. Recommended Amounts for Different Culture Vessel Formats

Culture Dish	Transfection Complex Volume (mL)	Plasmid DNA (µg)	GenJet™ Reagent (μL)
96-well	0.02	0.2	0.6
48-well	0.04	0.5	1.5
24-well	0.1	1.0	3
6-well	0.2	2	6
35 mm dish	0.2	2	6
60 mm dish	0.5	5	15
10 cm dish	1.0	7	21
T75 flask	1.5	10	30
250 ml flask	2.5	40	120

Step II. Preparation of Cells in Suspension

The following protocol is given for transfecting MEFs in 6-well plates, refer to <u>Table 1</u> for optimal cell number per well per culture vessels' surface area. The optimal transfection conditions for MEFs cells are given in the standard protocol described below.

- Detach the MEFs cells with trypsin/EDTA and stop the trypsinization with complete culture medium containing 10% FBS.
 Note: Cells that are difficult to detach may be placed at 37 °C for 5-15 min to facilitate detachment
- Take an aliquot of trypsinized cell suspension and count the cells to determine the cell density.
- Centrifuge the required 1.2x106 cells per well for 6-well plate at 150xg at room temperature for 10 min.
- Use fine tip pipette to remove supernatant <u>completely</u> so that no residual medium covers the cell pellet.

Step III. Preparation and application of Transfection Complex

For MEFs cells, the optimal ratio of GenJet™ (μL):DNA (μg) is 3:1. To ensure the optimal size of complex particles, we recommend using serum-free DMEM with High Glucose to dilute DNA and GenJet™ Reagent.

The following protocol is given for transfection in 6-well plates, refer to <u>Table 2</u> for transfection in other culture formats.

- For each well of 6-well plate, dilute 2 μg of DNA into 100 μL of serum-free DMEM with High Glucose. Vortex gently to mix.
- For each well of 6-well plate, dilute 6 μL of GenJet™ reagent (Ver. II) into 100 μL of serum-free DMEM with High Glucose. Vortex gently to mix.

Note: Never use Opti-MEM to dilute GenJet™ reagent and DNA, it will disrupt transfection complex.

- Add the diluted GenJet™ Reagent immediately to the diluted DNA solution all at once followed by vortexing briefly to mix.

Note: Do not mix the two solutions in the reverse order.

 Keep the transfection mix at RT for 10-15 min to allow transfection complexes to form.

Note: Never keep the transfection complexes longer than 20

- Resuspend the cell pellet prepared from <u>Step II</u> immediately in the 200 μL transfection complex and incubate at 37 °C for 20 min.
- At the end of incubation, add 2.0 mL of pre-warmed fresh complete cell growth medium to cells and plate onto one well of a 6-well plate.
- Change medium next day.
- Check transfection efficiency 24 to 48 hours post transfection.

Storage: GenJet $^{\rm m}$ Transfection Reagent is stable for up to 24 months at 4 $^{\rm 0}\text{C}.$